Relative Tutte Polynomials for Coloured Graphs and Virtual Knot Theory
نویسندگان
چکیده
We introduce the concept of a relative Tutte polynomial. We show that the relative Tutte polynomial can be computed in a way similar to the classical spanning tree expansion used by Tutte in his original paper on this subject. We then apply the relative Tutte polynomial to virtual knot theory. More specifically, we show that the Kauffman bracket polynomial (hence the Jones polynomial) of a virtual knot can be computed from the relative Tutte polynomial of its face graph with some suitable variable substitutions. Our approach is different from the ribbon graph approach and it applies to any virtual link diagram, not just the checkerboard colorable ones.
منابع مشابه
Relative Tutte Polynomials of Tensor Products of Coloured Graphs
The tensor product (G1, G2) of a graph G1 and a pointed graph G2 (containing one distinguished edge) is obtained by identifying each edge of G1 with the distinguished edge of a separate copy of G2, and then removing the identified edges. A formula to compute the Tutte polynomial of a tensor product of graphs was originally given by Brylawski. This formula was recently generalized to colored gra...
متن کاملTutte Polynomials of Tensor Products of Signed Graphs and Their Applications in Knot Theory
It is well-known that the Jones polynomial of an alternating knot is closely related to the Tutte polynomial of a special graph obtained from a regular projection of the knot. Relying on the results of Bollobás and Riordan, we introduce a generalization of Kauffman’s Tutte polynomial of signed graphs for which describing the effect of taking a signed tensor product of signed graphs is very simp...
متن کاملA Subset Expansion of the Coloured Tutte Polynomial
Bollobás and Riordan introduce a Tutte polynomial for coloured graphs and matroids in [3]. We observe that this polynomial has an expansion as a sum indexed by the subsets of the ground-set of a coloured matroid, generalizing the subset expansion of the Tutte polynomial. We also discuss similar expansions of other contraction–deletion invariants of graphs and matroids. 1. The coloured Tutte pol...
متن کاملTutte Polynomials of Signed Graphs and Jones Polynomials of Some Large Knots
It is well-known that the Jones polynomial of a knot is closely related to the Tutte polynomial of a special graph obtained from a regular projection of the knot. In this paper, we study the Tutte polynomials for signed graphs. We show that if a signed graph is constructed from a simpler graph via k-thickening or k-stretching, then its Tutte polynomial can be expressed in terms of the Tutte pol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Combinatorics, Probability & Computing
دوره 19 شماره
صفحات -
تاریخ انتشار 2010